CONTA-ELECTRONICS

Isolated Signal converter

Electrical specifications

Order information	
Type	
Cat.no	CMS-I10A-UI

Manual

The CMS-I10A-UI is a multi-functional 3-way isolated signal converter. This module is used for galvanic isolated high current measurement and conversion. Also a threshold relay output is provided.
The 3 -way isolation enables the module to be used locally as well as in the vicinity of the controlling system.
The inputs and outputs of the converter are configured by means of dipswitches.
Any combination of input and output can be chosen, so numerous different signal conversions can be set.
Default input/output setting is $0 . .10 \mathrm{~A} / 0 . .10 \mathrm{~V}$.
Other default input/output settings on request.

Features:

- Multiple High Current input (0..0,5A, 0..1A, 0..5A, 0..10A, True RMS AC and AVG DC)
- Multifunctional analog output (U,I)
- Threshold relay output with adjustable set point and hysteresis
- Current range selectable via DIP switches
-3-Way galvanic isolation
- Power supply 24V DC
- Extremely simple Zero-Calibration by pressing calibration button for 5 seconds

CONTA-ELECTRONICS

Isolated Signal converter

Configuration

To open the module press the locking levers under the terminals with a screwdriver.

The module is configured by setting the dip-switches according to the table on the side of the module.

The switching threshold of the relay can be adjusted using potentiometers P1 and P2. The switching diagram is shown on the side of the module.

Measuring principle

Average:

The average of a number of measurements taken from a DC current. When measuring the average of an AC current the result will be ' 0 '.

True R.M.S.:

The effective value of an AC current. This is an equivalent to a DC current that would provide the same amount of heat generated in a resistor as the AC current would if applied to that same resistor.

Connecting the module

The pin configuration for I/O and power connection is shown on the top of the module. The green Led on top indicates Power ON.

Calibration

The zero value of the module can be calibrated by pressing and holding the calibration button on top of the module until the Led flashes.
During calibration the input should be disconnected or there should be a referenced ' 0 ' connected to the input of the module.

Connection diagram

Dipswitch settings

Relay switching diagram

C

Set the threshold value of potentiometer P1 and P2 by using a screwdriver. Both potentiometers represent a percentage from the selected input value. Full left turn is 0% and full right turn is 100% of the selected input value.

A: The relay switches on when value P1 is reached. The relays switches off when value P1-P2 is reached.
B: The relay switches on when value P1 is reached. The relays switches off when value P 2 is reached.
C: The relay switches on between P1 and P2.

